Multidimensional Analysis of Blockchain Data
Using an ETL-based Approach

Giorgio Camozzi, Felix Hérer, and Hans-Georg Fill

University of Fribourg
Digitalization and Information Systems Group
Fribourg, Switzerland
{ giorgio.camozzi, felix.haerer, hans-georg.fill} @unifr.ch

Abstract. In this paper, a multidimensional model and an ETL workflow for
blockchain data analysis are proposed. The workflow makes use of state-of-the-art
open source tools and traditional data warehousing techniques to implement an
extensible and efficient solution for the extraction, transformation, loading, and
querying of data. Two scripts are implemented that aim at streamlining the ETL
process, therefore simplifying the replication of the workflow to carry out a data
analysis. Moreover, an exemplary use case demonstrating the analytical potential
of the multidimensional model is presented and evaluated. Finally, strengths and
limitations of this approach as well as the potential of future research are shown.

Keywords: Blockchain, Ethereum, Token, ETL

1 Introduction and Motivation

In 2008, an individual, or group of people, going by the pseudonym of Satoshi Nakamoto,
published a paper outlining a peer-to-peer electronic cash system named Bitcoin [1].
It was the first application of blockchain technology and gave birth to a plethora of
new systems of its kind [2]. Five years later, Vitalik Buterin proposed Ethereum', a
blockchain system that would allow the decentralized deployment and execution of
programs [3]. The notion of executing programs in a decentralized and trustless fashion
widened the horizons on the possibilities of blockchains and their applications. In recent
years, the use of blockchains has been observed in various domains from Internet of
Things? to food supply chains®.

With the rise in popularity and adoption of blockchain technology, the amount of
data stored on these distributed ledgers keeps increasing. The Bitcoin blockchain, for
example, stored about 270 GB of data as of April 2020 according to Blockchain.com®.
One year later, it amounted to around 336 GB. As all information in permissionless

blockchains is publicly available, it is well suited for data analysis [4].

''See https://ethereum.org/en/(accessed 19-09-2021)

2 See https://iotex.io/(accessed 20-09-2021)

3 See https://origintrail.io/(accessed 20-09-2021)

*See https://www.blockchain.com/charts/blocks-size (accessed 19-09-
2021)

17th International Conference on Wirtschaftsinformatik
February 2022, Niirnberg, Germany


https://ethereum.org/en/
https://iotex.io/
https://origintrail.io/
https://www.blockchain.com/charts/blocks-size

According to Galici et al. [5], analyzing blockchains can provide insights into the
use of the technology. They claim it can help in analyzing the usage and adoption of
blockchains, possibly detecting instances of criminal uses of the platforms as well as
predictive analytics about cryptocurrencies, among further statistical evaluations.

Possible analyses include the analysis of transactions during a specific time frame
with the account balances of various accounts in the network. Secondly, an analysis
utilizing publicly available data can be carried out for determining the metrics of trans-
action data of particular tokens. One example is the velocity of a specific token, i.e.,
the average duration until a coin is exchanged. This can provide insight into the usage
and volatility of tokens and tokenized assets. Thirdly, a further useful analysis can be
made to look at the token economy of a smart contract and understand, e.g., its adoption,
trends and performance. This can be interesting from the point of view of an end-user as
well as for a company or developer behind a smart contract.

In this paper we will describe a design artifact in the form of an approach and a
multidimensional database schema for the Ethereum blockchain for conducting multidi-
mensional analyses of blockchain data using a design science research methodology [6].
For demonstration purposes, we will conduct a token analysis of ResearchCoin® with a
focus on available transaction and block data. The goal of this exemplary analysis is to
show the practicality of the approach as well as its strengths and weaknesses.

Applying established methods in data warehouse design to blockchain data allows for
great flexibility stemming from the inherent adaptability of the workflow, e.g., through the
ability of changing the granularity of the analysis as needed. The potential applications
of analyses of blockchain data are wide ranging, and to the best of our knowledge,
neither structured or automated approaches, nor tools for an analysis of blockchains
using multidimensional models exist. Therefore, we are going to present a novel solution
to address this research gap.

As a foundation we used state-of-the-art tools specific to Ethereum such as Ethereum
ETL® and OpenEthereum’ for the synchronization and extraction of data. In addition,
we developed additional scripting-tools based on Python that enabled us to add further
dimensions and systematically automate the use of Ethereum ETL, thus achieving
continuous and unattended transformations and loading of data. By publicly providing
the code and a thorough documentation, we aim to motivate users to extend and further
adapt the tools and methods to tailor them to their specific needs.

2 Research Methodology

The research and experiments presented in this paper were conducted following the
design science research methodology proposed by Peffers et al. [6]. A representation of
these steps is depicted in Figure 1. In a first step, the problem was identified as being a
lack of efficient, flexible and automated data analysis methods for blockchain data using

Shttps://medium.com/researchhub/announcing-researchcoin-bc075d
4a3235 (accessed 02-22-2021)

®See https://github.com/blockchain-etlethereum-etl/ (accessed 12-09-
2021)

"See https://openethereum.github.io/ (accessed 19-09-2021)


https://medium.com/researchhub/announcing-researchcoin-bc075d4a3235
https://medium.com/researchhub/announcing-researchcoin-bc075d4a3235
https://github.com/blockchain-etlethereum-etl/
https://openethereum.github.io/

multidimensional models. In a second step, the objective of our research was defined.
This is the creation of an efficient and flexible, automated and continuous process for the
extraction of blockchain data and its storage in a data store to enable user-defined queries
for data analysis purposes. Step three consisted of designing a database schema according
to established methods in data warehouse design and developing the solution, which was
done by extending and combining readily available open source solutions with our own
implementation. The solution is developed for the Ethereum blockchain specifically. A
demonstration of the working prototype was done in a fourth step by way of an exemplary
token analysis on ResearchCoin® as well as through general testing to ensure correctness
and integrity of the data. In a fifth step, we evaluated the solution and discussed its
advantages and disadvantages as well as limitations and possible improvements. Finally
in step six, the solution was communicated by sharing the source code with replication
steps on GitHub [7], and through this paper to the scientific community.

[

[

1. Problem
Identification and
Motivation

methods for blockchain
data were found that
make use of an ETL
process and a
transformation of data

No efficient, flexible and
automated data analysis

2. Define Objectives of
a Solution

Creation of an ETL
workflow for blockchain
data as well as a data
store to enable user
defined queries for a
multidimensional
analysis. The workflow
shall be efficient,

3. Design and
Development

A multidimensional
database schema is
designed according to
established methods in

data warehouse design.

A set of scripts are
written to meet the
objectives defined in

An exemplary token
analysis on
ResearchCoin is carried
out to demonstrate the
approach in its entirety.

The solution is
evaluated and its merits
and drawbacks are
discussed.

The replication steps
are documented and the
solution is made open
source. This paper
serves to share the
research with the
scientific community.

reproducible, extensible
as well as automated
and continuous.

step 2. The focus was
put on solving the
problem for the
Ethereum blockchain.

into a multidimensional
schema.

Figure 1. Adapted version of the Design Science Research methodology proposed by Peffers et
al. [6].

3 Related Work

Ali and Wrembel studied state of the art techniques and various advancements in con-
ceptual and logical model design for ETL workflows [8]. They benchmarked these
existing approaches and identified their limitations. They concluded that there are several
techniques in use for the conceptual and logical modeling of ETL workflows. Still,
as they state in the paper, there is no standard procedure in use. As such, the authors
say that it is hard to compare and contrast different approaches. They make an appeal
for a standardized model for ETL workflows. They also highlight the importance of a
framework assisting the ETL developer in the task of modeling, and in the research on
performance enhancing techniques.

As there is great interest today in data analysis, many alike have proposed techniques
to analyze blockchains. Pinna et al. used Petri Nets to model transactions and addresses
in Bitcoin [9]. They modeled addresses as places and transactions as transitions. The

8See https://etherscan.io/token/0xd101dcc414£310268c37eebdcdl376c
cfa507£571 (accessed 12-09-2021)


https://etherscan.io/token/0xd101dcc414f310268c37eeb4cd376ccfa507f571
https://etherscan.io/token/0xd101dcc414f310268c37eeb4cd376ccfa507f571

experiments were carried out using the first 1.5 years of Bitcoin blockchain data. With
their model, they were for example able to cluster individual addresses to groups of
addresses belonging to the same entity. As they state in the paper, Petri Nets naturally
lend themselves to the modeling of Bitcoin data and provide a great opportunity for
blockchain data analysis.

XBlock-ETH was proposed by Zheng et al. [4]. It is a framework created for the
analysis of blocks, traces and receipts on Ethereum. They were able to use it to benchmark
the Ethereum network’s performance as well as to make predictions on the behavior of
gas prices. In their paper, further applications for their framework are stated, such as the
analysis of smart contracts for fraud detection or of cryptocurrency prices.

Galici et al. used traditional data warehousing techniques to implement an efficient
workflow for data extraction, transformation, and loading for the Bitcoin blockchain [5].
The data target was a relational database, enabling user-specific queries on Bitcoin
addresses and transactions. They were able to analyze the data and, e.g., study changes
in user behavior on the Bitcoin network.

Medvedev and the D5 team developed Ethereum ETL®, an open source tool for
the extraction, transformation and loading of Ethereum blockchain data. Supported are
the extraction from a Ethereum node software with transformation and loading into a
database. It is limited in scope to specific attributes used by the node software, without
syntactic transformations for deriving fine-grained dimension attributes and without
schema transformations that allow for multidimensional analysis. Ethereum ETL will be
applied for extraction into a data staging area and streaming into a relational database.

Further works exist in the areas of block explorers [10] and visual analysis [11, 12].
In these approaches, an analysis of the dimensions address, transaction, and block is
possible and, in some cases, visualized. However, the multidimensional analysis of
arbitrary dimensions with data aggregation, e.g., for smart contract attributes or for
custom dimensions of specific smart contracts, is not supported.

4 An ETL-based Data Analysis Process for Blockchain Data

A blockchain consists of a ledger that is distributed among peers in a peer-to-peer
network [13]. Blocks, containing a list of transactions, a timestamp and a pointer to the
preceding block among further attributes, are added to the blockchain by miners [14] and
create a chain-like data-structure. A key property of blockchains is the near-immutable
nature of the ledger [1], achieved by including a hash of a block in the succeeding block.

4.1 Data Structure of the Ethereum Blockchain

The Ethereum blockchain is a decentralized, quasi Turing-complete system [14] that
was first introduced by Vitalik Buterin in 2013 [3]. At its core lies the Ethereum Virtual
Machine (EVM), a global singleton run by all peers in the network, capable of executing
smart contracts [14]. Smart contracts are immutable programs with an associated address
that run in a distributed manner [14]. A contract’s address can be used as target of

See https://github.com/blockchain-etl (accessed 12-09-2021)


https://github.com/blockchain-etl

an Ether transaction to make function calls to the smart contract. The execution of a
smart contract requires the user to pay a fee called gas that generally rises with the
computational complexity of a program and the utilization of the network. This fee is
paid in Ether, which is the currency the whole network is based upon. Smart contracts
adhering to a specified standard are also known as tokens. The two prevailing standards
are ERC20 for fungible tokens and ERC721 for non-fungible tokens (NFTs), defining
functions to be implemented in the smart contract’s code. Tokens have been used among
many other things, as digital currency, e.g., the Basic Attention Token'?, or to determine
ownership of a digital good. An example for this is the Twitter CEO’s first ever Tweet'!,
who’s ownership was sold for nearly three million US dollars.

According to the specifications described in [15], a block in the Ethereum blockchain
contains among other information, the hash of the parent block, the number of all
ancestor blocks, the limit of gas that can be used per block, the amount of gas that was
used in total by all transactions in the block and the timestamp when the block was
mined. Each block also contains a list of transactions that have been mined.

Some of the main data contained in transactions is the price for gas in Wei dependent
on the complexity of the transaction, the maximum amount of gas that should be used
for a transaction, the receiver of the transaction and the amount of Ether to be sent [15].

4.2 Schema and Multidimensional Analysis

The first step in the design and development of the approach is the conceptualization
of a data schema suitable for analyzing attributes over multiple dimensions. Depending
on which entities are to be extracted, specific tables must be set up for the extraction
process. As we limited our research to transactions and blocks, two corresponding
tables were implemented. Their design is derived from the specifications of Ethereum
ETL!2, the tool used for the extraction. Further entities can also be extracted, though
we will disregard this fact for the purpose of this paper. The goal here is to generate a
multidimensional database schema starting from two-dimensional data. This is achieved
through a sequence of transformation steps.

The database schema for the multidimensional analysis consists of extraction, trans-
formation and loading tables as well as the final star schema. Each step in the process
requires multiple dimensions, each dimension containing attributes either directly carried
over from the extraction process or derived from other values.

The core of the workflow is based on a star schema. It consists of six tables and
represents the interface between the user and the data. Figure 2 shows a visualization of
it. From the dimensions and its attributes, data aggregations of individual dimensions and
arbitrary combinations of dimensions can be computed. E.g., commonly used dimensions
such as blocks and transactions (see Section 3) in addition to, e.g, addresses, gas usage,
or smart contract methods in relation to timespans or accounts. At the heart of the
star schema lies the fact table. It serves the purpose of connecting all dimensions at a

0See https://basicattentiontoken.org/ (accessed 11-09-2021)

""'See https://v.cent.co/tweet /20 (accessed 11-09-2021)

2See https://github.com/blockchain-etl/ethereum—etl-postgres/tr
ee/master/schema (accessed 30-03-2021)


https://basicattentiontoken.org/
https://v.cent.co/tweet/20
https://github.com/blockchain-etl/ethereum-etl-postgres/tree/master/schema
https://github.com/blockchain-etl/ethereum-etl-postgres/tree/master/schema

transaction level. It is also possible to set the grain to be at the block level, though the
decision was made to have more fine-grained information in the star schema. Surrogate
keys are used both for the transaction and block dimensions. Natural keys are used for the
remaining dimensions. They are well suited, while still providing valuable information,
such as the date and time, without the need to join further dimension tables. Though
unusual in data warehousing, the decision was taken to have two distinct dimensions
for date and time. This is done to keep space requirements as low as possible. The
account dimension has two references, one from the account_to and one from the
account_ from attribute.

d_transaction d_account

PK transaction_id — account_id |
hash PK address

nonce. eth_sent

transaction_index eth_received d_block

from_address account_balance PK block_id

to_address timestamp

value number

gas hash

gas_price parent_hash

nonce
input f_blockchain
sha3_uncles

method_id PK, FK | block_id

logs_bloom
method_parameters PK, FK | transaction_id

transactions_root
block_number PK, FK | account_from_address o —

state_root

plock_timestamp PK, FK | account_to_address H
receipt_status PK,FK | date receipts_root
receipt_root o e | time miner

difficulty

receipt_contract_address

receipt_gas_used total_dificulty

block_hash size

receipt_cumulative_gas_used extra_data

gas_limit

e gas_used

PK time

d_date transaction_count

PK date —

hours

minutes
year
seconds

month

day
weekday
day_in_chars

week

Figure 2. Visualization of the star schema with its fact table and five dimensions storing the
blockchain data.

Two extraction dimensions e_d_transactions and e_d_blocks are created
afterwards, compatible to the schema used by Ethereum ETL. This tool is executed for
extraction from an Ethereum node, streaming data into the database as the blockchain
is updated. Data is extracted into the two tables, only taking into account new data not
existing in the schema beforehand.

In the next phase, the transformation and the values in the multiple dimensions of the
star schema are computed. Further information on concrete transformations can be found
in Section 4.4. Figure 3 shows the tables used in this step, using the dimensions of the
final star schema with two additional temporary tables for calculating account balances.

The loading process consists of simply inserting the data in the transformation tables
into the corresponding dimension table in the star schema.



t d_transaction t_d_block t_d_account_from t_d_account
PK transaction_id PK block_id address account_id

hash timestamp eth_out PK address
nonce number CONSTRAINT
transaction_index hash t_d_account_to eth_sent
from_address parent_hash address eth_received
to_address nonce eth_received account_balance
value sha3_uncles
gas logs_bloom
gas_price transactions_root t_d_date t_d_time
input state_root PK date PK time
method_id receipts_root year hours
method_parameters miner month minutes
receipt_cumulative_gas_used difficulty day seconds
receipt_gas_used total_difficulty weekday
receipt_contract_address size day_in_chars
receipt_root extra_data week
receipt_status gas_limit
block_timestamp gas_used
block_number transaction_count
block_hash

Figure 3. Visualization of the transformation dimensions used in the second ETL process step.

~- DAtADASE <=~ - == == == = mm e e e

i»| Extraction Schema lransform*){ Transformation }7load4>{ Star Schema
H Schema

Node
runnning a
blockchain client

Query
blockchain
data

Q |

Figure 4. Data analysis setup of a node client synchronizing blockchain data, with the data being
extracted, transformed and loaded in a database. A user carries out queries on the final star schema.

4.3 Extraction

The extraction phase is the initial step of the ETL process, concerned with the collection
of raw data from one or more data sources.

The extraction process requires access to an Ethereum client. There exist multiple
implementations of Ethereum clients'3, though for compatibility reasons we use the
OpenEthereum client!*. Furthermore, the workflow makes use of Ethereum ETL, an
open source tool developed by [16]. This tool consists of Python scripts that extract
transaction and block data from an OpenEthereum node, among other things. A wrapper
around Ethereum ETL [7] was created for the purpose of facilitating the usage of the
tool. Once started, the script requires the user to provide information about the target
database (database location and credentials), the location of an OpenEthereum node, as

3 See https://ethereum.org/en/developers/docs/nodes—and-clients/#
clients (accessed 19-09-2021)
4 See https://openethereum.github.io/(accessed 19-09-2021)


https://ethereum.org/en/developers/docs/nodes-and-clients/#clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#clients
https://openethereum.github.io/

well as the data to be extracted (e.g. the starting block number and entities of interest).
The corresponding Ethereum ETL stream command is then generated and Ethereum
ETL is launched.

4.4 Transformation

The goal of the transformation phase is twofold: transforming data into multiple trans-
actions, and carrying out syntactic and possibly semantic transformations where data
harmonization is required.

During the transformation the two-dimensional schema that is the one with transac-
tion and block tables is transformed into a multidimensional schema with, in our case,
five analysis dimensions and one fact table for the metrics of interest in the particular
case. The goal here is to create new data from already available data. This is done through
a series of syntactic and semantic transformation steps consisting of aggregating values —
e.g. calculating the amount of Ether sent by one account, deducing information — e.g.
the day of the week from a timestamp, splitting attributes — e.g. separating the method id
from the parameters of an input, or cleaning up data — e.g. assigning the zero hex address
to all NULL to_address attributes. In our case, only syntactic transformations were
needed. Worth noting are the account tables, which can be used to calculate account
balances without the need for receipts. Here, two temporary tables are created where a
row with an address and an eth_out attribute is inserted in the account_from
table for each individual transaction from a specific address. The amount of outgoing
Ether is computed by multiplying the gas used by the transaction and the gas price for
the transaction. The obtained value is then added to the Ether sent by the account for the
specific transaction and multiplied by minus one. This is to simplify calculations later
on. Analogously, the account_to table is also populated, the incoming Ether here is
simply the amount that was sent from the sender, as the receiver does not carry any gas
costs. Thereafter, the t _d_account table is populated.

4.5 Loading

The final phase consists in loading the transformed data and make all data available for
analysis along the dimensions defined before.

The process of loading the data into the star schema is automated and happens once
all transformations have been done. From each transformation table the data is simply
inserted as is into the corresponding dimension. Once the data has been inserted into the
dimensions, the fact table is populated with one primary key per dimension — with the
exception of the account dimension which is doubly referenced — and a composite key of
the primary keys is created. Additionally, we carried out a verification step querying the
first and last block of each month that was extracted in order to make sure that everything
has been loaded correctly.

Updating the database at a later stage requires the whole process to be repeated. First,
the OpenEthereum node must be synchronized to the desired block number, then the
extraction using the wrapper script has to be carried out again, which automatically starts
from the last synchronized block. Finally, the ETL script is run to transform and load



the new data into the existing star schema. This whole process is incremental, which
means only new blocks are added to the star schema and the ones already inserted are
not modified or updated in any way.

4.6 Queries

The benefit of multidimensional analyses is the ad-hoc construction of queries along the
dimensions. A star schema enables a multitude of queries to be easily constructed. In
multidimensional models, it is possible to slice and dice data, while still keeping the
complexity of queries low compared to, e.g., a normalized schema. This is due to the
fact that less transformation steps are usually required, as they have already been carried
out during the ETL process.

Possible queries include, but are not limited to queries on the account holders, their
transactions and balances during a specific time frame. Furthermore, it is possible to
analyze the token economy of a specific smart contract — if applicable to the specific
blockchain at hand - by, e.g., analyzing its usage in a network. This can be valuable for a
business providing a smart contract, but also for any third party to gain insights into the
usage of a specific token. Moreover, analyses of the volatility of a token can be done by,
e.g., measuring the duration from the time a token is received until it is exchanged again.

5 Demonstration with the ResearchCoin Use Case

For the demonstration of our artifact we selected ResearchCoin tokens. Therefore, we
focused on Ethereum blockchain data for the month of June 2021 and made use of
the fact table in conjunction with the transaction dimension. Already with just one
dimension and the fact table, we were able to retrieve valuable information on the use of
ResearchCoin tokens. If necessary, this workflow could be further optimized, e.g., by
making use of indexes, material views and aggregating intermediate results.

5.1 Purpose of ResearchCoin

ResearchCoin (RSC) is an Ethereum based ERC20 token that is used as a monetary
incentive for contributing to ResearchHub'>. The latter, crowd-sources the curation of
scientific articles and tries to improve their accessibility by removing paywalls. The
number of RSC received for a specific contribution depends on a number of factors,
for example, the number of upvotes of a shared article'®. There also exists a reputation
metric for contributors, which decreases with increasing downvotes and has a direct
impact on the privileges of the contributor. Furthermore, ResearchHub is set up as a
Decentralized Autonomous Organization (DAO) and RSC holders have one vote in the
DAO per token they possess. RSC also serves as a means to fund research proposals and
to reward researchers for content a user deems to be valuable.

15 See https://www.researchhub.com/about (accessed 15-10-2021)
©See https://www.notion.so/ResearchCoin-21d1af8428824915a4d1f7c
0b6b77cb4 (accessed 15-10-2021)


https://www.researchhub.com/about
https://www.notion.so/ResearchCoin-21d1af8428824915a4d1f7c0b6b77cb4
https://www.notion.so/ResearchCoin-21d1af8428824915a4d1f7c0b6b77cb4

5.2 Data Analysis of ResearchCoin

All of the experiments were conducted on blocks from the month of June 2021. The first
queries that were carried out are basic analyses, e.g., the total transactions made to the
RSC smart contract address. This specific query showed that only 29 transactions were
made to the smart contract during the month of June 2021. It must be noted that only
RSC that is withdrawn from ResearchHub is actually stored on-chain. All Research Coin
transactions to contributors are stored off-chain and it is thus not possible to determine
how many RSCs people are currently holding from this data.

In a next step, we look in more detail at the reasons for the transactions made. First,
the method IDs occurring in transactions to the smart contract are identified. Method
IDs are assigned to functions written with a high-level language such as Solidity and
assigned IDs when compiling them to bytes code. The use of method IDs is (1) for
calling functions using only byte code through the so-called ABI (application binary
interface) and (2) for addressing and actually carrying out the call within the Ethereum
virtual machine (EVM). We see that only two distinct methods have actually been called,
one is the ERC-20 transfer method with the ID 0xa9059cbb and the other is the ERC-20
approve method with the ID 0x095ea7b3.

Looking at the transfer method in detail by querying the hash of a function with the
method and its parameters, we can find out how many ResearchCoins were transferred
to which Ethereum account. Detailed queries and results can be found on GitHub'”.

Furthermore, it is possible to track transactions made to token exchanges. For ex-
changes between RSC and other coins or tokens to occur, the account holder sends an
approve transaction to the RSC contract with the exchange smart contract address as
spender parameter. Data about all of these kinds of transactions can be retrieved by
means of a simple query, which can be found on GitHub'®. Secondly, the account holder
sends a transaction to the exchange smart contract, any time after the approval transac-
tion. This transaction is the token exchange with parameters such as amount In, the
address where to send the exchanged tokens to, and a path which is an array of multiple
addresses of ERC-20 smart contracts. Each pair of addresses specifies an exchange.

6 Evaluation and Discussion

In the following two subsections, we will first lay out various technical details, before
wrapping up the evaluation with a discussion of the benefits and limitations of the
proposed approach.

6.1 Technical Evaluation

Tests were done on a machine running Ubuntu 20.04, PostgreSQL Server 12, OpenEthereum
v3.2.6, Ethereum ETL 1.6.0, Ethereum Data Analysis Scripts v1.0.0 and Python 3.8.

7See https://github.com/grgcmz/eth-data-analysis/blob/master/RS
CAnalysis.md

8See https://github.com/grgcmz/eth-data-analysis/blob/master/RS
CAnalysis.md#erc-20-functions—and-parameters


https://github.com/grgcmz/eth-data-analysis/blob/master/RSCAnalysis.md
https://github.com/grgcmz/eth-data-analysis/blob/master/RSCAnalysis.md
https://github.com/grgcmz/eth-data-analysis/blob/master/RSCAnalysis.md#erc-20-functions-and-parameters
https://github.com/grgcmz/eth-data-analysis/blob/master/RSCAnalysis.md#erc-20-functions-and-parameters

To set up the OpenEthereum node, the command shown in the documentation'®
was used. This command starts a full node on the machine it is run. In a full node all
transactions are verified from the block zero. Unlike in an archive node, the state trie is
pruned, i.e., not all states are stored on disk. This reduces disk space requirements, while
still keeping most benefits that come from verifying all transactions.

The size on disk to store the blockchain as of the end of June 2021 amounts to around
680 GB. The synchronization took about 12 weeks running on a machine with an AMD
3700x processor, 32 GB of RAM and an NVMe SSD. The PostgreSQL database size for
the extracted block and transaction data from 01-01-2021 to 30-06-2021 amounts to 209
GB. This database consists of the tables for Ethereum ETL, the extraction, transformation
and loading tables as well as five dimension tables and one fact table.

As the experiments were conducted on data from the month of June 2021, the
extraction process was started using ethereum_et1_wrapper from block 11565019.
The transformation was again done by restricting the blocks to be transformed, which can
be accomplished from within et 1_postgres.py. It must be noted that restricting the
extracted and transformed blocks will invalidate account balances, as these are calculated
using the complete transaction history.

6.2 Benefits and Limitations

In light of the limitations of existing approaches regarding a flexible and automated
data analysis (see Section 2), especially considering the use of arbitrary dimensions and
aggregations (see Section 3), we identified the following benefits and limitations.

One of the advantages of having an ETL workflow and modeling data using a star
schema is the flexibility gained in the possible queries and the choice of data source.
Through the addition of further dimensions and transformation steps, a multitude of
analytical needs can be covered. A further advantage of this approach is the ability to
carry out transformations on the data. This leads to faster and simpler queries, as some
information, such as account balances, does not have to be computed during the query.
Furthermore, a core strength of this approach is the fact that the principles described
in this paper are applicable to any type of blockchain based network, as they are quite
generic and can be adapted as needed. As of the time of writing, the Blockchain ETL
project provides ETL scripts for Ethereum, Bitcoin, Litecoin, Dash, Zcash, Dogecoin
and Bitcoin Cash. It must be noted that these blockchains are not directly compatible
with the scripts described in this paper.

The approach has some limitations. The first one being that it does not allow for fully
continuous data streaming into the star schema. OpenEthereum and Ethereum ETL (and
therefore also the Ethereum ETL wrapper) can be run continuously. The ETL process is
what holds back the system in this regard. The script etl_postgres.py was designed with
user interaction in mind, and as such requires input from the user. However, changing the
program with hard coded decisions for a specific database is trivial. Scheduling a script
to run in specific time intervals would then allow for a nearly continuous stream of data.

See https://github.com/grgcmz/eth-data-analysis/blob/master/An
alysisSetup.md#openethereum-configuration


https://github.com/grgcmz/eth-data-analysis/blob/master/AnalysisSetup.md#openethereum-configuration
https://github.com/grgcmz/eth-data-analysis/blob/master/AnalysisSetup.md#openethereum-configuration

A further limitation of this system, is the fact that it does not support traces. Using
traces would allow us to, e.g., distinguish between internal and external transactions. As
of now, all account balances are calculated without the use of traces. This means that
they are not completely accurate and must be calculated starting from block zero. For
this same reason, we cannot distinguish between the creation of a smart contract, a call
to it, or its deletion.

Moreover, the process is very time and resource intensive. Our experiments were
carried out on the blocks mined in June 2021. Still, the synchronization has to be started
from block zero, if verifying all transactions is a necessity. This entails storing roughly
680 GB of data to synchronize the node up to June 2021 as well as 340 GB more to store
the extracted data in a PostgreSQL database.

On the other hand, it is possible to speed up the synchronization process and greatly
reduce the size of the blockchain by starting from a snapshot of another peer without
verifying all transactions before. This implies trust in a third party though, which goes
against the core principles of trustless networks.

Overall, the proposed workflow is very promising. Although it was only demonstrated
on the Ethereum blockchain, there is nothing in the way of adapting the process for many
more blockchains. The sheer volume of data to store and process, as well as the time and
resources required, might just be the Achilles heel of this approach to blockchain data
analysis. Still, there are ways to partially work around these limitations.

7 Conclusion and Outlook

The overarching goal of our research was to develop a flexible and extensible database
schema and ETL process to enable an analysis of blockchain data. We focused on the
Ethereum blockchain for this research. OpenEthereum was used to synchronize a full
node locally and Ethereum ETL for the data extraction. Furthermore, we designed a
multidimensional model using a star schema, and developed two scripts to facilitate the
ETL process. Finally, we evaluated the approach on the use case of ResearchCoin. All
code is open source to encourage further development of the workflow and provide a
contribution to the research field of blockchain data analytics.

Future research will entail solving the limitations described in the previous section,
as well as expanding the capability and applicability of the proposed workflow. The
additional support for further blockchains will be subject of future research and experi-
mentation. Nonetheless, the proposed workflow lays important foundations to build upon
and hopefully catalyses further research and development of workflows making use of
ETL processes and multidimensional models in the field of blockchain data analysis.

8 Acknowledgements

This work was supported by the Swiss National Science Foundation project Domain-
Specific Conceptual Modeling for Distributed Ledger Technologies [196889].



References

10.

11.

12.

13.

14.

15.

16.

. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at

https://metzdowd.com (10 2008)

. Dixon, M.F., Gel, Y., Kantarcioglu, M., Akcora, C.G.: Blockchain data analytics. IEEE

Intelligent Systems (12 2018)

. Buterin, V.: Ethereum: A next-generation smartcontract and decentralized application platform.

GitHub repository 1 (2013), https://github.com/ethereum/wiki/wiki/Whit
e-Paper

. Zheng, P., Zheng, Z., Wu, J., Dai, H.N.: Xblock-eth: Extracting and exploring blockchain data

from ethereum. IEEE Open Journal of the Computer Society 1, 95 — 106 (2020)

. Galici, R., Ordile, L., Marchesi, M., Pinna, A., Tonelli, R.: Applying the etl process to

blockchain data. prospect and findings. Information 11, 204 (04 2020)

. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research

methodology for information systems research. Journal of Management Information Systems
24(3), 45-77 (2007), https://doi.org/10.2753/MIS0742-1222240302

. Camozzi, G.: grgemz/eth-data-analysis (May 2021), https://doi.org/10.5281/ze

nodo.4756655

. Ali, S., Wrembel, R.: From conceptual design to performance optimization of etl workflows:

current state of research and open problems. The VLDB Journal 26 (09 2017), https:
//doi.org/10.1007/s00778-017-0477-2

. Pinna, A., Tonelli, R., Orrd, M., Marchesi, M.: A petri nets model for blockchain analysis.

The Computer Journal 61(9), 1374-1388 (2018)

Zhong, Z., Wei, S., Xu, Y., Zhao, Y., Zhou, F., Luo, F.,, Shi, R.: Silkviser: A visual explorer
of blockchain-based cryptocurrency transaction data. In: 2020 IEEE Conference on Visual
Analytics Science and Technology (VAST). pp. 95-106 (2020)

Hirer, F., Fill, H.G.: A comparison of approaches for visualizing blockchains and smart
contracts. In: 22nd International Legal Informatics Symposium/22. Internationales Rechtsin-
formatik Symposion (IRIS 2019). pp. 527-537. Editions Weblaw (2019)

Tovanich, N., Heulot, N., Fekete, J.D., Isenberg, P.: Visualization of blockchain data: A
systematic review. IEEE Transactions on Visualization and Computer Graphics 27(7), 3135—
3152 (2021)

Bashir, I.: Mastering blockchain. Packt Publishing Ltd (2017)

Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts and DApps.
O’Reilly Media (2019)

Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. https://gi
thub.com/ethereum/yellowpaper (2017)

Medvedev, E., the D5 team: Ethereum etl (2018), https://github.com/blockchai
n-etl/ethereum-etl, last accessed 17 April 2021


https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.5281/zenodo.4756655
https://doi.org/10.5281/zenodo.4756655
https://doi.org/10.1007/s00778-017-0477-2
https://doi.org/10.1007/s00778-017-0477-2
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl

	Multidimensional Analysis of Blockchain DataUsing an ETL-based Approach

